skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shehayeb, Elissa O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Self-organization under out-of-equilibrium conditions is ubiquitous in natural systems for the generation of hierarchical solid-state patterns of complex structures with intricate properties. Efforts in applying this strategy to synthetic materials that mimic biological function have resulted in remarkable demonstrations of programmable self-healing and adaptive materials. However, the extension of these efforts to multifunctional stimuli-responsive solidstate materials across defined spatial distributions remains an unrealized technological opportunity. This paper describes the use of a nonequilibrium reaction−diffusion process to achieve the synthesis of a multifunctional stimuli-responsive electrically conductive metal−organic framework (cMOF) in a gelled medium with control over particle size and spatial periodicity on a macroscopic scale. Upon integration into chemiresistive devices, the resulting cMOF particles exhibit a size-dependent response toward hydrogen sulfide gas, as determined by their distinct surface-to-volume ratio, porosity, unique synthesis methodology, and unusual microcrystallite morphology compared to their counterparts obtained through bulk solution phase synthesis. Taken altogether, these achievements pave the way toward gaining access to functional nanomaterials with well-defined chemical composition, dimensions, and precisely tailored functions using far-from-equilibrium approaches. 
    more » « less
    Free, publicly-accessible full text available January 15, 2026